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A description is given of general (preparation-measurement) physical experi- 
ments in the language of Scott's mathematical theory of computation. 

And all I was doing was hoping that the 
computer-type of thinking would give us some 
new ideas, if any are really needed. 

Richard P. Feynman 

Following Ludwig (1983), we shall use the expression fundamenta l  
domain o f  a physical theory to denote those facts that can be described 
without the considered theory itself and are mapped into the mathematical 
formalism dealing with the logicomathematical structure of the theory. 

We shall seek to describe the fundamental domain for the case of 
experiments with a single microsystem. Our purpose is to look very carefully 
at the tacit connotations and implications contained in the customary use 
of the term "physical experiment," and to find out exactly how to give 
expressions to those connotations and implications by means of Scott's 
theory of computation (Scott, 1981). This paper is a continuation of our 
previous papers (Posiewnik, 1985, 1986). 

Without restricting ourselves to any particular example of a physical 
experiment, we shall proceed to give as general a description of a physical 
experiment as possible. Usually we perform the following types of experi- 
ments: by certain well-defined macroscopic procedures we prepare a state 
of affairs for study, and at some later time, according to other well-defined 
procedures, we interact with the state of affairs so obtained to obtain 
information about it. We will assume that each experiment that one is 
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interested in performing can be thought of  as being on a fixed individual 
microsystem. According to Piron (1976), every microsystem is in a definite 
(pure) state. 

Let S denote the abstract set of  all (pure) microstates of  our system. 
A state of  the microsystem depends upon how we prepared the system. 
Each experiment has a finite formal description (p, O) consisting of 

an initial "preparat ion procedure"  p [precontrolling in Finkelstein's (1979) 
sense] followed by an "observat ion" (postcontrolling) O. We define a 
preparation procedure as an ordered, physically realizable list of  instructions. 

A single measurement  on a quantum microsystem hardly gives us any 
information at all. Therefore we have to create a large number  of  identical 
microstates of  a given system and perform the same measurement  on each 
of them. 

But what does it mean to say that the microstates are indeed "identical" ? 
We have no way of controlling the large number  of  microscopic constituents 
of  the preparing apparatus.  Therefore, we can never arrange the apparatus 
in such a way that we can confidently assert (the word "assert"  is used here 
not in the sense of  "predict ,"  but in the sense of  making an a priori true 
statement) that our system emerging from the setup is in a given (pure) 
microstate. The only thing one can say in this situation is that a family of  
microstates was prepared according to the same macroscopic preparat ion 
procedure p. Therefore, one must always state that a preparat ion process p 
maps a definite set of  precontrolling parameters into a set P ~ S of  micro- 
states. The set P depends on certain technical facts about the macroscopic 
preparat ion apparatus in which microsystems can be produced in large 
numbers. 

I f  s ~ S is a microstate and p is a preparat ion procedure, then s 6 P 
means that the microstate s has been prepared according to the preparat ion 
procedure p. It is clear from this discussion that the most fundamental  
entities that are useful for our formalism are the subsets of  the set S of  all 
microstates of  our system. It is true that one can always assume the existence 
of points in S, but they must be considered to exist only in the sense of  
some limiting process. 

In the mathematical  framework (syntax) of our theory we shall express 
the notion of the prepared state in the following way: 

Definition 1. Let ~ be a nonempty system of subsets of  the set S of  
microstates, where: 

(i) S e 
(ii) If P1,P2, P 3 e ~  and P3~P~c~P2, then PlC~Pze~ 

The elements of  the system ~ will be called the prepared states. 
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The above conditions describe a well-defined set-theoretic "formal  
structure" and, as such, they require no further justifications. However, the 
heuristics are as follows. The elements of  ~ represent definite preparat ion 
procedures. Condition (i) means that there is a common preparat ion pro- 
cedure for each state of  our system. The procedure may be described in the 
following way: Chose as you want, at random or not, one of the preparators 
for the system and execute a preparat ion procedure at your own choice. 

Condition (ii) is weaker (and it seems to us more reasonable as well) 
than the Ludwig (1983) axiom AS 1.2 for the preparat ion procedures. Our 
condition states that if the set of  states prepared according to both prepar- 
ation procedures P1 and P2 (that is, the set P1 n/2) contains a set of  states 
prepared according to a preparat ion procedure P3, then P1 n P2 is a possible 
preparat ion procedure. 

Now let us define a notion of the experimental state. The  idea behind 
the concept is the following: if we want to explain the experimental meaning 
of a particular (pure) microstate to an experimenter in practice we can give 
a sequence Po ~- P1 - P2 ~"  " �9 D p,  ~ .  �9 �9 of  prepared states of  increasing 
refinement. The "better and better '  prepared states P, are partial approxima- 
tions to an "ideal limit." 

The ideal limit, which in some situations is exactly the sought for (pure) 
microstate, is an abstraction which must be regarded purely as a device to 
make our theories easier to handle. I f  we have two "convergent"  sequences 
of  prepared states 

p o D _ p ~ D _ . . . D p  D . . .  

Qo D- Q1D " . . ~_ Q,  ~_ . . . 

we say that the two sequences are equivalent, i.e., determine the same 
"limit," iff 

/~ V such that Pk C Q~ 
i k 

/k V such that Q, c_ Pk 
k i 

This is an equivalence relation and the "ideal limits" can be identified with 
the equivalence classes. 

From the above construction we can abstract a bit more general a 
definition of the experimental state. 

Definition 2. The experimental state (the "ideal limit" of  "better  and 
better" prepared states) over a system ~ of prepared states is a subfamily 
x c_ ~ where 

(i) S e x  

(ii) (PI ,  P 2 e x ) ~ ( P ~ n P 2 e x )  
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(iii) (PlCX and P l c _ P 2 c ~ ) ~ P 2 c x  

The family of  all experimental states over the system ~ is written as ~. 
The careful reader acquainted with Scott's (1981) theory of neighbor- 

hood systems may notice that our definitions of  the prepared and the 
experimental states are notional counterparts of  Scott's neighborhood sys- 
tems and of (ideal) elements of the systems. This does not surprise us, 
because if we take seriously Fredkin's idea of  "physics as information" (see 
Wheeler, 1982) we have to agree that the same structures should arise in 
the foundations of  physics as in the foundations of  the mathematical theory 
of computation. 

Now we will give a mathematical  description of the second part  of  a 
physical experiment--i .e. ,  observation (measurement,  postcontrolling). It 
will not be a precise mathematical  description of  a macroscopic measure- 
ment apparatus. Instead, we shall only assume that there exists an objective 
characterization of the mode of  operation of the apparatus. In the precon- 
trolling phase of a physical experiment we prepare a microsystem in some 
(pure) microstate s. The only true thing we can say about the input state s, 
is that it was prepared according to a preparat ion procedure p, so it belongs 
to a prepared state P; s E P. After performing the measurement we obtain 
a number  on the numerical scale of  the measuring apparatus. Because the 
input information is in some sense "fuzzy," the postcontrolling number  is 
"fuzzy," too. 

Definition 3. Let R be the real line. Let ~V be the set of  nonempty open 
intervals with rational end points plus the whole •. It is easy to show that 
the system satisfies the conditions of  Definition 1. 

The elements of  the above system will be called the numerical states. 
Taking the above into account, we can state that on the most primitive 

level one can represent a (numerical) measurement  procedure as a relation 
from a system ~ of the prepared states to the system 2( of  the numerical 
states. I f f  denotes the relation, then P fN  ( P c  ~, N ~ ? O  means that for 
each input (micro) state from the prepared state P, after the measurement  
we obtain as an output a number  from the interval N. (The relation f is 
fixed for a definite measuring apparatus.) 

It is evident that if one wishes to construct a mathematical formalism 
for a description of  a fundamental  domain of a physical theory - -a  formalism 
which can always be enriched in structure without changing its basic 
fo rm-- then  one must start from the weakest assumptions. The minimal 
conditions on the measurement relation are as follows: 

(i) I f  the only fact we know is that the input microstate belongs to the 
set S of  all microstates of  our system, then we can only assert that the result 
of  the measurement  operation f lies somewhere in R. 
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So we can write 

SfR 

(ii) Suppose that for each microstate from a prepared state P the 
measured values belong to a numerical state N~ and in another series of 
postcontrolling we conclude that for the same input prepared state P the 
measured values belong to a numerical state N2 as well. 

Then the result of measurement for prepared state P should belong to 
the intersection of the, sets N~ and N2, i.e., N~ c~ N2: 

(PfN, and P f N 2 ) ~ ( P f ( N 1  n N2)) 

for each P c ~ ;  N1, N2 e d~. 
(iii) Suppose we know that PlfN1 for some P~ e ~ and N 1 c .N'. I f  we 

improve the accuracy of  the preparation process for the measurement f, 
i.e., instead of the prepared state P~ we input a prepared state P2, P2-c p~, 
and if we degrade the accuracy of N~ to N2, N2 ~_ N1, then we can still 
assert P2fN2. 

For each / ' 1 , / ' 2  c ~ and N~, N2 e W such that P~ D_/'2 and N2 ~_ N1, if 

PlfN1, then P2fN2. 
The above minimal conditions on a measurement relation correspond 

exactly to the Scott's (1981) notion of an approximable mapping. 
Now we will prescribe in the language of our formalism some other 

suitable notions and theorems of Scott's theory. 

Definition 4. Let P be a prepared state, P e ~. The finite experimental 
state determined by P is defined by 

~ p = { Q e ~ :  Pc_ Q} 

Of course a finite experimental state is at the same time an experimental 
state. The finite experimental states are "dense" in the set ~ of  all experi- 
mental states. 

For each experimental state x 

x = (._J {~'P: P e x} 

Any experimental state is uniquely determined by its finite approxima- 
tions, i.e., is a certain type of "limit" of finite experimental states. 

Definition 5. Let x and y be experimental states. We say that x approxi- 
mates y iff x _c y. 

Proposition. Let ~ be a system of the prepared states and W a system 
of the numerical states. 
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A measurement  relation f :  ~ --> 2r always determines a function f :  ~ --> 
2~ between the experimental states by virtue of  the formula 

for all x c ~. 
Conversely, this function uniquely determines the original relation by 

the equivalence 

P f N  iff N e f ( ' ~ P )  fo ra l l  P ~ ,  N e N  

The measurement  functions are always monotone,  i.e., 

(x ~_ y ) ~ ( f ( x )  ~_ f ( y ) )  

for x, y c  ~. 
Two measurement  functions f l :  ~ --> s and f2: ~ --> ~ are identical as 

relations iff 

f l ( x ) = f 2 ( x )  for all x c ~  

Topology. Given a system ~ of prepared states, define for P ~ 

[P]  = { x e  ~ :  P ~ x }  

Then the sets [P]  for P e ~ make ~ into a topological space. 
The measurement  functions f :  3 ~ ~ 87 are exactly the continuous func- 

tions between these spaces. 

C O N C L U S I O N  

The mathematical  theory of computation in Scott's formulation forms 
a suitable mathematical  framework (syntax) of  the fundamental  domain of 
preparat ion-observat ion experiments with single microsystems. 

Other consequences of  the above representation will be studied in 
subsequent papers. 
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